
	 	 v.2017.01	

George Fox University CS/IS/Cyber 
Java Coding Style Guidelines 

Introduction 

§ 3	or	4	spaces	are	used	as	your	default	
indentation…	DO	NOT	use	tabs.	

§ Local	variable	(including	parameters)	and	method	names	are	lowercase,	with	
occasional	upperCase	characters	in	the	middle.	Use	camelCase	

§ Class	names	start	with	an	Uppercase	letter	
§ Constant	names	are	UPPERCASE,	with	an	occasional	UNDER_SCORE.	
§ There	are	spaces	after	reserved	words	and	surrounding	binary	operators,	i.e.			

o total = num1 + num2;  //Good 
o total=num1+num2;  //Poor 
o if (someVar < someValue) //Good 
o if(someVar<someValue) //Poor  
o for (…)    //Good 
o for(…)    //Poor 

§ Braces	must	line	up	vertically.	
§ No	magic	numbers	may	be	used	(use	variables	or	constants).	
§ Every	method	must	have	a	Javadoc	header	comment.	
§ At	most	30	lines	of	code	may	be	used	per	method.	
§ No	continue	or	break	is	allowed.	
§ All	non-final	instance	variables	must	be	private	and	start	with	an	underscore	

then	lowercase	letter.	
	
Classes 

Each	class	should	be	preceded	by	a	Javadoc	class	comment	explaining	the	purpose	
of	the	class.	

Use	the	following	ordering	when	creating	your	class:	

1. Static	final	variables	
2. Static	variables	
3. Instance	variables	
4. Constructors	
5. Instance	methods	
6. Static	methods	
7. Main	(if	present)	

	

Leave	2	blank	lines	after	every	method.	

	



	 	 v.2017.01	

All	non-final	variables	must	be	private.	Methods	and	final	variables	can	be	either	
public	or	private,	as	appropriate.	

All	features	must	be	tagged	public	or	private	(or	protected	when	
appropriate).		

 

Methods 

Every	method	(except	for	main)	starts	with	a	comment	in	Javadoc	format.	

		

/** 
   Convert calendar date into Julian day. 
   Note: This algorithm is from Press et al., Numerical Recipes 
   in C, 2nd ed., Cambridge University Press, 1992 
 
   @param day day of the date to be converted 
   @param month month of the date to be converted 
   @param year year of the date to be converted 
   @return the Julian day number that begins at noon of the 
   given calendar date. 
   [optional]@throws as necessary  
*/ 
public static int getJulianDayNumber(int day, int month, int year) 
{  
   . . . 
} 

	  

	

Parameter	names	must	be	explicit,	especially	if	they	are	integers	or	Boolean:	

		

public Employee remove(int d, double s) 

   //  Huh? 

public Employee remove(int department, double severancePay) 

   //  OK 		

	
Methods	must	have	at	most	30	lines	of	code.	The	method	signature,	comments,	
blank	lines,	and	lines	containing	only	braces	are	not	included	in	this	count.	This	rule	
forces	you	to	break	up	complex	computations	into	separate	methods.	
	

 



	 	 v.2017.01	

Variables and Constants 

Define	all	variables	at	the	beginning	of	methods:	

  

public void whatever() 

{   

   double xold;  

   double xnew; 

   boolean done; 

   . . . 

} 

Do	not	define	each	variable	just	before	it	is	used	for	the	first	time	(“On	The	Fly”)	
xnew	is	declared	‘on	the	fly’	below:	

  

{  

   . . . 

   double xold = Integer.parseInt(input); 

   boolean done = false; 

   while (!done) 

   {   

      double xnew = (xold + a / xold) / 2;  

      . . . 

   } 

   . . . 

} 

Do	not	define	multiple	variables	on	the	same	line:	
  int dimes = 0, nickels = 0; // Don't 

Instead,	use	separate	definitions:	

  
int dimes = 0;      // OK 

int nickels = 0;  

  

In	Java,	constants	must	be	defined	with	the	reserved	word	final.	If	the	constant	is	
used	by	multiple	methods,	declare	it	as	static	final.	It	is	a	good	idea	to	define	static	
final	variables	as	private	if	no	other	class	has	an	interest	in	them.	



	 	 v.2017.01	

Do	not	use	magic	numbers!	A	magic	number	is	a	numeric	constant	embedded	in	
code,	without	a	constant	definition.	Any	number	except	-1,	0,	1,	and	possibly	2	is	
considered	magic:	
  if (p.getX() < 300) // Don't 

	

Use	final	variables	instead:	

  

final double WINDOW_WIDTH = 300; 

. . . 

if (p.getX() < WINDOW_WIDTH) // OK 

	
Even	the	most	reasonable	cosmic	constant	is	going	to	change	one	day.	You	think	
there	are	365	days	per	year?	Your	customers	on	Mars	are	going	to	be	pretty	
unhappy	about	your	silly	prejudice.	Make	a	constant	
  public static final int DAYS_PER_YEAR = 365; 

so	that	you	can	easily	produce	a	Martian	version	without	trying	to	find	all	the	365s,	
364s,	366s,	367s,	and	so	on,	in	your	code.	

	

When	declaring	array	variables,	group	the	[]	with	the	type,	not	the	variable.	

  
int[] values; // OK 

int values[]; // Ugh--this is an ugly holdover from C 

 

Control Flow 

The if Statement 

Avoid	the	"if	.	.	.	if	.	.	.	else"	trap.	The	code	

  

if ( . . . ) 

   if ( . . . ) . . .; 

else . . .; 

	
will	not	do	what	the	indentation	level	suggests,	and	it	can	take	hours	to	find	such	a	
bug.		

	



	 	 v.2017.01	

Always	use	{	.	.	.	}’s	when	dealing	with	"if	.	.	.	if	.	.	.	else":	

	

  

if ( . . . ) 

{   

   if ( . . . )  

   { 

      . . .; 

   } 
   else  

   { 

      . . .; 

   } 

}  

  

The for Statement 

Use	for	loops	only	when	a	variable	runs	from	one	value	to	another	with	some	
constant	increment/decrement:	

  
for (int i = 0; i < nums.length; i++) 

   System.out.println(nums[i]); 

Or,	even	better,	use	the	"for	each"	loop:		

  
for (int num : nums)  

   System.out.println(num); 

Do	not	use	the	for	loop	for	weird	constructs	such	as	

  
for (a = a / 2; count < ITERATIONS; System.out.println(xnew)) 

   // Don't 

Make	such	a	loop	into	a	while	loop.	That	way,	the	sequence	of	instructions	is	much	
clearer.	

  

a = a / 2; 

while (count < ITERATIONS) // OK 

{  . . . 

   System.out.println(xnew); 

} 



	 	 v.2017.01	

 
Nonlinear Control Flow 

Avoid	the	break	or	continue	statements.	Use	another	boolean	variable	to	control	
the	execution	flow.	
	

Exceptions 

Do	not	tag	a	method	with	an	overly	general	exception	specification:	

  
Widget readWidget(Reader in) 

   throws Exception // Bad 

Instead,	specifically	declare	any	checked	exceptions	that	your	method	may	throw:	

  
Widget readWidget(Reader in) 

   throws IOException, MalformedWidgetException // Good 

Do	not	"squelch"	exceptions:	

  

try 

{  

    double price = in.readDouble(); 

} 

catch (Exception e) 

{} // Bad 

Beginners	often	make	this	mistake	"to	keep	the	compiler	happy".	If	the	current	
method	is	not	appropriate	for	handling	the	exception,	simply	use	a	throws	
specification	and	let	one	of	its	callers	handle	it.	
	

Lexical Issues 

Naming Convention 

The	following	rules	specify	when	to	use	upper-	and	lowercase	letters	in	identifier	
names.	
All	local	variable	and	method	names	are	in	lowercase	(maybe	with	an	occasional	
upperCase	in	the	middle);	for	example,	firstPlayer.	Private	instance	variables	
use	the	same	naming	convention	except	they	are	preceded	by	an	underscore;	for	
example	_totalCapacity.	



	 	 v.2017.01	

All	constants	are	in	uppercase	(maybe	with	an	occasional	UNDER_SCORE);	for	
example,	CLOCK_RADIUS.	

All	class	and	interface	names	start	with	uppercase	and	are	followed	by	lowercase	
letters	(maybe	with	an	occasional	UpperCase	letter);	for	example,	BankTeller.	

Names	must	be	reasonably	long	and	descriptive.	Use	firstPlayer	instead	of	fp.	
No	drppng	vwls.	Local	variables	that	are	fairly	routine	can	be	short	(ch,	i)	as	long	as	
they	are	really	just	boring	holders	for	an	input	character,	a	loop	counter,	and	so	on.	
Also,	do	not	use	ctr,	c,	cntr,	cnt,	c2	for	variables	in	your	method.	Surely	these	
variables	all	have	specific	purposes	and	can	be	named	to	remind	the	reader	of	them	
(for	example,	current,	next,	previous,	result,	.	.	.	).		

	

Indentation and White Space 

Use	3	or	4	spaces	for	your	indentation.		(pick	one	and	be	consistent)	

Use	blank	lines	freely	to	separate	parts	of	a	method	that	are	logically	distinct.	

Use	a	blank	space	around	every	binary	operator:	

  

x1 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);  // Good 

 

x1=(-b-Math.sqrt(b*b-4*a*c))/(2*a);//Bad 

Leave	a	blank	space	after	(and	not	before)	each	comma	or	semicolon.	Do	not	leave	a	
space	before	or	after	a	parenthesis	or	bracket	in	an	expression.	Leave	spaces	around	
the	(	.	.	.	)	part	of	an	if,	while,	for,	or	catch	statement.	

  

if (x == 0)  

    y = 0; 

 

f(a, b[i]); 

Every	line	must	fit	on	80	columns.	If	you	must	break	a	statement,	add	an	indentation	
level	for	the	continuation:	

  
a[n] = .................................................. 

   + .................; 

Start	the	indented	line	with	an	operator	(if	possible).	

	
	

	



	 	 v.2017.01	

If	the	condition	in	an	if	or	while	statement	must	be	broken,	be	sure	to	brace	the	
body	in,	even	if	it	consists	of	only	one	statement:	

  

if ( ......................................................... 

      && .................. 

      || .......... ) 

{   

   . . . 

} 

If	it	weren't	for	the	braces,	it	would	be	hard	to	separate	the	continuation	of	the	
condition	visually	from	the	statement	to	be	executed.	
	

Braces 

Opening	and	closing	braces	must	line	up	vertically:	

  

while (i < n) 

{    

   System.out.println(a[i]);                    

   i++; 

} 

Some	programmers	don't	line	up	vertical	braces	but	place	the	{	behind	the	reserved	
word:	

  

while (i < n) {     // DON'T 

   System.out.println(a[i]); 

   i++; 

} 

Doing	so	makes	it	hard	to	check	that	the	braces	match.	
 

 

NOTE:	If	you	have	questions	on	style	that	are	not	covered	in	this	document…	ASK	
(before	you	submit	your	work)	


